p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.13SD16, C4.21C4≀C2, C2.D8.2C4, (C2×C4).103D8, (C2×C8).303D4, (C2×Q16).1C4, C22⋊C16.4C2, C4.8(C23⋊C4), C8.18D4.2C2, (C22×C4).188D4, C2.5(D8.C4), C2.3(C8.17D4), C4.C42.6C2, (C22×C8).100C22, C22.58(D4⋊C4), C2.15(C22.SD16), (C2×C8).20(C2×C4), (C2×C4).220(C22⋊C4), SmallGroup(128,82)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.13SD16
G = < a,b,c,d,e | a2=b2=c2=1, d8=e2=c, eae-1=ab=ba, ac=ca, dad-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=abd3 >
Character table of C23.13SD16
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | -1+i | 1-i | -1-i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | -1-i | 1+i | -1+i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 1-i | -1+i | 1+i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 1+i | -1-i | 1-i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1611+ζ169 | ζ1615+ζ1613 | ζ163+ζ16 | ζ1613+ζ167 | ζ1611+ζ16 | ζ167+ζ165 | ζ169+ζ163 | ζ1615+ζ165 | complex lifted from D8.C4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ167+ζ165 | ζ163+ζ16 | ζ1615+ζ1613 | ζ169+ζ163 | ζ1615+ζ165 | ζ1611+ζ169 | ζ1613+ζ167 | ζ1611+ζ16 | complex lifted from D8.C4 |
ρ21 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ169+ζ163 | ζ1615+ζ165 | ζ1611+ζ16 | ζ1615+ζ1613 | ζ1611+ζ169 | ζ1613+ζ167 | ζ163+ζ16 | ζ167+ζ165 | complex lifted from D8.C4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1613+ζ167 | ζ1611+ζ16 | ζ1615+ζ165 | ζ163+ζ16 | ζ167+ζ165 | ζ169+ζ163 | ζ1615+ζ1613 | ζ1611+ζ169 | complex lifted from D8.C4 |
ρ23 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1615+ζ1613 | ζ1611+ζ169 | ζ167+ζ165 | ζ1611+ζ16 | ζ1613+ζ167 | ζ163+ζ16 | ζ1615+ζ165 | ζ169+ζ163 | complex lifted from D8.C4 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1615+ζ165 | ζ169+ζ163 | ζ1613+ζ167 | ζ1611+ζ169 | ζ1615+ζ1613 | ζ1611+ζ16 | ζ167+ζ165 | ζ163+ζ16 | complex lifted from D8.C4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ163+ζ16 | ζ167+ζ165 | ζ1611+ζ169 | ζ1615+ζ165 | ζ169+ζ163 | ζ1615+ζ1613 | ζ1611+ζ16 | ζ1613+ζ167 | complex lifted from D8.C4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1611+ζ16 | ζ1613+ζ167 | ζ169+ζ163 | ζ167+ζ165 | ζ163+ζ16 | ζ1615+ζ165 | ζ1611+ζ169 | ζ1615+ζ1613 | complex lifted from D8.C4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.17D4, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.17D4, Schur index 2 |
(1 54)(3 56)(5 58)(7 60)(9 62)(11 64)(13 50)(15 52)(17 35)(18 26)(19 37)(20 28)(21 39)(22 30)(23 41)(24 32)(25 43)(27 45)(29 47)(31 33)(34 42)(36 44)(38 46)(40 48)
(1 62)(2 63)(3 64)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 33)(32 34)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 30 9 22)(2 43 10 35)(3 46 11 38)(4 23 12 31)(5 26 13 18)(6 39 14 47)(7 42 15 34)(8 19 16 27)(17 63 25 55)(20 64 28 56)(21 59 29 51)(24 60 32 52)(33 49 41 57)(36 50 44 58)(37 61 45 53)(40 62 48 54)
G:=sub<Sym(64)| (1,54)(3,56)(5,58)(7,60)(9,62)(11,64)(13,50)(15,52)(17,35)(18,26)(19,37)(20,28)(21,39)(22,30)(23,41)(24,32)(25,43)(27,45)(29,47)(31,33)(34,42)(36,44)(38,46)(40,48), (1,62)(2,63)(3,64)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,33)(32,34), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,30,9,22)(2,43,10,35)(3,46,11,38)(4,23,12,31)(5,26,13,18)(6,39,14,47)(7,42,15,34)(8,19,16,27)(17,63,25,55)(20,64,28,56)(21,59,29,51)(24,60,32,52)(33,49,41,57)(36,50,44,58)(37,61,45,53)(40,62,48,54)>;
G:=Group( (1,54)(3,56)(5,58)(7,60)(9,62)(11,64)(13,50)(15,52)(17,35)(18,26)(19,37)(20,28)(21,39)(22,30)(23,41)(24,32)(25,43)(27,45)(29,47)(31,33)(34,42)(36,44)(38,46)(40,48), (1,62)(2,63)(3,64)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,33)(32,34), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,30,9,22)(2,43,10,35)(3,46,11,38)(4,23,12,31)(5,26,13,18)(6,39,14,47)(7,42,15,34)(8,19,16,27)(17,63,25,55)(20,64,28,56)(21,59,29,51)(24,60,32,52)(33,49,41,57)(36,50,44,58)(37,61,45,53)(40,62,48,54) );
G=PermutationGroup([[(1,54),(3,56),(5,58),(7,60),(9,62),(11,64),(13,50),(15,52),(17,35),(18,26),(19,37),(20,28),(21,39),(22,30),(23,41),(24,32),(25,43),(27,45),(29,47),(31,33),(34,42),(36,44),(38,46),(40,48)], [(1,62),(2,63),(3,64),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,33),(32,34)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,30,9,22),(2,43,10,35),(3,46,11,38),(4,23,12,31),(5,26,13,18),(6,39,14,47),(7,42,15,34),(8,19,16,27),(17,63,25,55),(20,64,28,56),(21,59,29,51),(24,60,32,52),(33,49,41,57),(36,50,44,58),(37,61,45,53),(40,62,48,54)]])
Matrix representation of C23.13SD16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 12 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 |
0 | 5 | 0 | 0 |
0 | 0 | 3 | 9 |
0 | 0 | 8 | 14 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 5 | 15 |
0 | 0 | 12 | 12 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,16,12,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[6,0,0,0,0,5,0,0,0,0,3,8,0,0,9,14],[0,16,0,0,1,0,0,0,0,0,5,12,0,0,15,12] >;
C23.13SD16 in GAP, Magma, Sage, TeX
C_2^3._{13}{\rm SD}_{16}
% in TeX
G:=Group("C2^3.13SD16");
// GroupNames label
G:=SmallGroup(128,82);
// by ID
G=gap.SmallGroup(128,82);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,387,520,1690,248,2804,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=e^2=c,e*a*e^-1=a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*d^3>;
// generators/relations
Export
Subgroup lattice of C23.13SD16 in TeX
Character table of C23.13SD16 in TeX